Existence of positive solutions for fractional Laplacian systems with critical growth

نویسندگان

چکیده

In this article, we show the existence of positive solution to nonlocal system $$\displaylines{ (-\Delta)^s u +a(x)u=\frac{1}{2_s^*} H_u(u,v) \quad \hbox{in }\mathbb{R}^N,\cr v +b(x)v=\frac{1}{2_s^*}H_v(u,v) } \mathbb{R}^N,\cr u,v>0 \text{in u,v\in \mathcal{D}^{s,2 }(\mathbb{R}^N). }$$ We also prove a global compactness result for associated energy functionalsimilar that due Struwe in [26]. The basic tools are some information from limit systemwith \(a(x) = b(x) 0\), variant Lion's principle concentration and fractional systems, Brouwer degree theory.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Existence of positive solutions for discrete delta-nabla fractional boundary value problems with p-Laplacian

where t ∈ T = [ν – β – 1,b + ν – β – 1]Nν–β–1 . βν–2, b∇ν are left and right fractional difference operators, respectively, and φp(s) = |s|p–2s, p > 1. By using the method of upper and lower solution and the Schauder fixed point theorem, we obtain the existence of positive solutions for the above boundary value problem; and applying a monotone iterative technique, we establish iterative schemes...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2022

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2022.79